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What i1s Nuclear Fusion?
14.1 MeV

* Two lighter nuclei Deuterium (D) Neutron

combine to form heavier
nucleus b ‘
¢ Q= (Am)c?
— Qpr =17.6 MeV h r \
 Compare DT and Coal:
— DT: 300 GJ/g ’\//
— Coal: 30Kk]/g
— Factor of 10 Million! p @
Tritium (T) Alpha (*He)

3.5 MeV

https://interestingenergyfacts.blogspot.com/2010/04/nuclear-fusion-facts.html 2
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How to Fuse Nuclel

* Need to overcome
repulsive coulomb
barrier

e IV, =1MeV
— 500x hotter than
solar core

* (Can Tunnel through
barrier Quantum
Mechanically
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Coulomb potential

/

Approaching nucleus

)

:/ Nuclear well

Z

S. Atzeni, The Physics of Inertial Fusion: Beam

Plasma Interaction, Hydrodynamics, Hot
Dense Matter (2004)
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Why DT Fusion?

High Fusion Cross Section
(FCS): o
— Dependent on
Geometric Cross
Section and Tunneling
Probability

Low Temperature
— Ecop ~ 60kelV
— T~10 keV
— 1keV ~ 11 Million K

60keV

10

107

107>

10741

R P S S 8 Y A Ay S W N . -\T.---_-_---

B 10 100 100

Ecom(keV)

https://scipython.com/blog/plotting-nuclear-fusion-cross-sections/
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Lawson Criterion

 (Conditions for sustained

fusion? 12kBT

— n: Number density high nt >
enough for frequent (O"U) Q
collisions

— 7: Long confinement
time for fuel to fully * T = Temperature
burn * Q = Energy Released

* (ov) = Fusion Cross Section

15 3 integrated over Maxwell-
nt>10 S/ cm Boltzmann Distribution

 for DT fusion
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Types of Confinement

ohmic heating magnet
palaoidal field toraidal field
magnet magnet

Magnetic

[ plasma . plasma
magnetic o ant
field line

© 1999 Encyclopadia Britannica, Ine.
http://large.stanford.edu/courses/2011/ph241/olson1/
https://www.britannica.com/technology/fusion-

G raVitatio n a I reactor/Principles-of-magnetic-confinement

Hohlraum
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Indirect Drive

Inertial (ICF)
-,

Capsule Nature Phys 12, 435-448 (2016)

\ihell
| \

Lasers

Direct Drive .

ILasers
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Laser enters through Laser

Entrance Hole (LEH)
Heats inner surface of cylinder
I~ogpT*

_ = P800 TW~1015W/Cm2

Ag~1lcm?

— T,.~250 eV

Want High Temperature
— Small Hohlraum
— Small LEH

Hohlraum Temperature

Inner cone

Outer cone

Cooling ring

e '|

‘ Fuel fill tube

W

\> 1<+— Hohlraum
Gol My~ SS—

> Laser entrance hole

Nature 601, 542-548 (2022) 3
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Capsule R=1mm

— Vaporized by Laser
* Inner Shell: DT Ice
— T~18K
— Most of Fuel Mass
* Inner Core: DT gas
— Low Density
— Reaches Highest Temperature
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1D Hydrodynamics

e Shock Waves Drive
Compression

— Sharp pressure
changes from short
pulse laser

* Euler Equations of

Hydrodynamics
— mass, momentum,
energy
V, 1
« Ex)Want-=2=-=:
vV, 4
— 2 _, o for 1 shock!
P1
D2

— —= = 10 isentropically
b1

Shock ... :
Boundary 02, D2
P1, P1
o _1
Specific Volume V' = p

Shock P2 _ 4 — VZ/Vl
Compression p1 4V, /V; —1

Isentropic D Vi >/3
Compression E_ 72

10
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Shocks <y

 Several Weak Shocks better 12

than One Strong Shock 10

e Laser pulse tuned so shocks
converge at center

1 Shock
2 Shocks
Isentrope

» Isentrope Parameter a > 1 1/4"""""""""""1'/'2 Vy
— Strong Shocks Increase
— Want to minimize

\
N\

~

Third shock launched

Second shock launched

T.(eV)

Nature Phys 12, 435-448 (2016)

First shock launched

Ly 11
t (ns) Laser off
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Shell Ablation
.

Momentum Conservation
(1) X-rays heat Ablator =~ P
— Shell gets vaporized

(2) Material ejected 4 L
— outward 1

— speed: Vg, - S
(3) Implosion of shell ‘—'RO- |

— inward N
— speed: Vi ﬁ
Vimp (3) ¢—

/ 12
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Spherical Rocket

e 1D Rocket Model

dv; dM M .
;tnp = Vex 7 = Vimp = Vex In (H‘)) Standard Rocket Equation

— Radius of shell changes as fuel implodes inwards

* Implosion Velocity Scaling
— Vimp~VaA4

1 . ~ &
Aspect Ratio: A = N

0
* Thin shell drives faster implosions

— Ablation Velocity: v,
* speed at which shell recedes

R

* related to hohlraum temperature

13
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Ilgnition and Burn

* Kinetic Energy of Imploding Shell goes to
Internal Energy of DT Fuel.

1
— KE =-Mvj,,

" " 1015s
* Ignition Condition: nt >
cm3
P R . g
— Nt = ——~pcR¢:in—
muvep Pctc cm?

* How to Quantify how much is burned?: ®

PR
PR + Hp

— Burn Efficiency: ® =

— Hpg is the burn parameter

14
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Gain and Yield

Given pR and Ty, we know fraction of
fuel that gets burned &

_ PR

"~ pR+Hgp

* Alpha Particles cause heating:
— Q= 3.5 MeV per DT pair or 67 MJ/mg
* Multiply by total fuel mass My
* Fusion Energy Yield in M] is “Y”
— Y =M:Q®
* Gain: G = ELL
— E; is the laser energy on target

15
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Instablilities and Symmetry

time

e s lee dc'@ dy

S. Atzeni, The Physics of Inertial Fusion: Beam Plasma
Interaction, Hydrodynamics, Hot
Dense Matter (2004)

Rayleigh-Taylor Instability Case to Capsule: CCR = dy/d

~@

Ry

AR
R

Convergence: C = Ry/Ry Aspect Ratio: A= R/AR

—

RO 16
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Neutron Yield Scaling

1447
_p0.64 _iMP <467
Y Pabl a1-445

P,p;: Ablation Pressure
— Laser Energy

Vimp: Implosion Velocity
— Aspect Ratio

S : Scale
— Mass and Radius

a : Isentrope Parameter
— Laser Pulse Profile

1077 I I I 7
: =Be //
W =BFSC /
| m=HFT1672 //
® = HDC LGF 4
1y || ®=HETL L#
10 7
/
/
/
i
// =
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oy - y
P Lo A
of &
15 7.4
10 —
]
7
i
// E
10“' ) - .Tl - .,.T” - ——
10" 10" 10 10

Papt 064 Vimp  \*47 a1
1014 ( ) 4—.67/ S
Sl (5X10‘4) 100 km/s 2 (2.0)

Plasma Phys. Control. Fusion 61 (2019)
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Hybrid-E Campaign

High Yield Big Radius Implosion Design Phys. Plasmas 26, 052704 (2015)
— Increased Scale of NIF capsules ~15%
— Kept Hohlraum Size Same
— Differences in Pp;, Vimp, @ negligible

« N170827 (HDC Campaign)

— R=910 um
— Y =0.053 MJ

« N210207 (HYBRID-E Campaign)

— R = 1050 um 4.67

~ Y =0.174M]J Y21 (R21>

* Over 3x increase in yield, scaling predicts Yi7 R17
2x increase = (1.15)*¢7 = 2

— Scaling works best within same campaign

18
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Conclusion

DT most viable candidate for controlled fusion
* Physical Considerations
— Laser Energy, Hohlraum/Capsule Size
* Engineering Considerations
— Capsule Smoothness, Laser Efficiency
e N210207->N210808 Shot

— 8x gain increase: same capsule size
— mainly due to engineering advances

* Future of NIF
— N210808->N221204 had G=0.72-> 1.5
— N221204->N23777? has G=1.5 -> 777
* 8% thicker ablator, 8% increase in laser energy
¢ Symmetry Improvements

19
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Tunneling Coulomb Barrier

Vb. _____

Coulomb potential

Approaching nucleus

e p——

Energy
m
I

—
o WY = %‘g_mq’ n ’ (1) Schrodinger Equation
« Y= P (2) Assume form of ¥
e —¢"(x)+ ' (x)? = M (3) ¢"'(x) = 0 (slowly varies)
o P(x) = f Md / (4) WKB (W/ eq. (2))
2 eZ
e V(r) = py—r JE = pp (5) For 1D Z=1 Barrier
oTtp
* d(rp) ~ o ~ Y iz (6) Apply eq. (4) to eq. (5)

. LIj(rtp) ~ e INE (7) Apply eq. (2) to eqg. (6)
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Ve = 4mR4AR

Simplified Scaling Estimate

VH = _T[RI?-)I
1. Energy Balance (Assume py = ps) 3

3 3 1
SPVi +5PVs =5 McVimyp

AR 2
p = pEvimp

2. Partially Fermi Degenerate Shell

5/3 2
pXap z
3/ZC p _ _ (3n?)3h 5/3
o AR 1 —=a Pp=—¢ (p)
Pc RH a3/2 vimp Pp me
3. Areal Density
3
Vimp M ~R3~53
pCRH~WS C 0
4. Yield
v3 Compare to 3#;3
~ ~ ~ P 4 —p __p0.64 UMD <467
Y (DMC ,OCRHMC o1 S Y Pabl o 144 ‘EZ
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Reactivity

(o0} 4.2 X 1072 (Tyep)*em3s™  if3 < Tpoy < 6
PT 1.1 X 10718(Tyey)2cm3s 1 if 8 < Tyey < 25

S. Atzeni, The Physics of Inertial Fusion: Beam

10-14 I T Plasma Interaction, Hydrodynamics, Hot
Dense Matter (2004)
o o0 = s | 0@ € e/t
ov) = . — o(e) e exp(—e/kpgT)de.
2mme)' 2 (kg T2 Jy

10-16

10—17

{ov) (cm?/s)

10—]8

10719

1 10 100 1000
T (keV)
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